Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 237: 344-358, 2019 May 01.
Article in English | MEDLINE | ID: mdl-30818237

ABSTRACT

Food waste (FW) enriched with readily biodegradable organics can enhance biological nutrient removal (BNR), and biogas production. This study conducted extensive wastewater treatment simulations using BioWin software to predict the impact of food waste on nutrient removal, biogas generation, and energy balance. A total of 114 scenarios were tested to simulate different treatment technologies i.e. conventional activated sludge, Modified Ludzack-Ettinger (MLE), anaerobic-anoxic-aerobic (A2O), Bardenpho, and 2nd generation BNR technologies. The simulations also included sidestream treatment for nitrogen removal, as well as mainstream partial nitrification based on BNR. The results showed that FW addition enhanced nitrogen removal and decreased effluent nitrogen for BNR processes by 3.6-7.9 mg/L for MLE, 0.6-1.3 mg/L for A2O, and 1-2.3 mg/L for Bardenpho. In addition, FW addition decreased net operational cost by 26%-63% for BNR processes operating at mainstream conventional dissolved oxygen (DO) of 2 mg/L, 24%-78% for partial nitrification system, 29%-54% for sidestream, and 23%-76% for sidestream with mainstream partial nitrification process. The total net energy benefit considering both the net change in aeration energy and methane energy for a typical 37,854 m3/d or 10 MGD plant increased with FW addition by 3300-7900 kWh/d with a variation between BNR types, due to a substantial increase in methane production. Carbon diversion scenarios showed that the higher primary treatment efficiencies decreased the net operational cost and increased net energy gain.


Subject(s)
Waste Disposal, Fluid , Wastewater , Bioreactors , Nitrogen , Sewage
2.
Waste Manag ; 61: 473-483, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27789104

ABSTRACT

Five semi-continuous flow anaerobic digesters treating a mixture of food waste (FW) and municipal biosolids (primary sludge and thickened wasted activated sludge) at an solids retention time (SRT) of 20 days and different blend ratios i.e. 0, 10%, 20%, 40% by volume with the fifth digester treating only biosolids at the same COD/N ratio as the 40% FW digester were operated to investigate co-digestion performance. Sixty days of steady-state operation at organic loading rates (OLR) of 2.2-3.85kgCOD/m3/d showed that COD removals were higher for the three co-digesters than for the two municipal biosolids digesters i.e. 61-69% versus 47-52%. Specific methane production per influent CODs were 1.3-1.8 folds higher in co-digestion than mono-digestion. The first-order COD degradation kinetic constants for co-digestion were more than double the mono-digestion. Additional methane production through synergism accounted for a minimum of 18-20% of the overall methane production. The estimated non-biodegradable fraction of the FW particulate COD was 7.3%. However, the co-digesters discharged 1.23-1.64 times higher soluble nitrogen than the control.


Subject(s)
Food , Waste Disposal, Fluid/methods , Anaerobiosis , Biofuels , Biological Oxygen Demand Analysis , Bioreactors/microbiology , Methane/biosynthesis , Microbial Consortia , Nitrogen/metabolism , Waste Disposal, Fluid/instrumentation
3.
Bioresour Technol ; 183: 61-9, 2015 May.
Article in English | MEDLINE | ID: mdl-25723128

ABSTRACT

Food wastes with typical US food composition were analyzed to characterize different constituents in both particulate and soluble phases i.e., solids, chemical oxygen demand (COD), 5-day biochemical oxygen demand (BOD), nitrogen (N), phosphorus (P). Relationships between various pollutants were also investigated using 50 samples. One gram of dry food waste generated 1.21 g COD, 0.58 g BOD5, 0.36 g Total SS, 0.025 g Total N, and 0.013 g Total P. Distribution of constituents between particulate and aqueous phases indicated that 40% of COD and 30% of nitrogen were present in soluble form. Relative mass ratios of COD and nitrogen to solids were three to five times higher in particulates than in aqueous phase. However, COD/N ratios were higher in aqueous form than particulates at 63:1 versus 42:1. Detailed relationships between parameters showed that COD, nitrogen, and phosphorus in particulates are 200%, 3.6%, and 3.5% of the volatile suspended solids.


Subject(s)
Food , Waste Disposal, Fluid/instrumentation , Wastewater/chemistry , Water Purification/methods , Biofuels , Biological Oxygen Demand Analysis , Chemical Fractionation , Nitrogen/isolation & purification , Phosphorus/isolation & purification , Regression Analysis , Sewage/chemistry , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...